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1 Introduction

The Temporal Logic of Actions (TLA) is a
temporal logic commonly used for spec-
ifying digital computer systems [11, 13].
TLA formulae are linear temporal prop-
erties invariant under “stuttering.” Stutter-
ing invariant speci�cations written as TLA
formulae are easily composed, using noth-
ing more than conjunction, with no im-
plicit assumptions about synchronization.
Stuttering invariance also leads to a sim-
ple but powerful notion of “re�nement,”
that is, showing that a detailed speci�ca-
tion implements an abstract one.

In [11] Lamport presents TLA as a �rst-
order logic, but, in speci�cations, higher-
order features are often desirable. For ex-
ample, one would often like to prove a rule
of inference that works over all proposi-
tions or all predicates. Lamport must in-
troduce special syntax (e.g., for fairness)
where in a higher-order context these lan-
guage features could be replaced with sim-
ple functions on propositions. Moreover,
programmers today often work in higher-
order programming languages and the
powerful abstraction features in these lan-
guages (e.g., a generalized “map” func-
tion) are not easily expressed in TLA spec-
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i�cations.
As a step towards the goal of de�ning

a higher-order TLA, we present a model
in which it could be interpreted. In stan-
dard linear temporal logics, which do not
feature stuttering invariance, higher-order
features can be modeled in the so-called
“Topos of Trees” (i.e., presheaves over
ω) [5, 15]. Another impressive line of work
on “Temporal Types” takes a topos theo-
retic approach based on translation invari-
ant sheaves (using the additive structure of
R) [16]. Unfortunately, these models can-
not capture TLA’s stuttering invariance.
Our categorical model of higher-order

TLA meets several desiderata, motivated
by the observations above:
1. it should provide a model of higher-
order classical S4 (TLA is a special case
of this modal logic);

2. it should have a “temporal” interpre-
tation which accounts for stuttering
invariance;

3. it should correspond with an equiv-
alent notion of validity, in the �rst-
order subset, to the standard seman-
tics of TLA.

We believe our model to be the �rst that
is suitable for a higher-order TLA. It is
constructed as follows. First, we switch
perspective, from the standard discrete-
time semantics of TLA to an alterna-
tive real-time semantics found in the lit-
erature [9] and reviewed in Section 2.
Then, recalling that models for higher-
order modal logic can be generated by geo-
metric morphisms between topoi (Section

3), we construct our model by recasting
the real-valued semantics by way of such
a geometric morphism (Section 4). Our key
insight was to consider stutterings as a
group, leading to a generalization of stut-
tering, which we call “faltering.”

2 The Temporal Logic of Action

Like Pnueli’s Linear Temporal Logic
(LTL) [14], TLA adopts the perspective
of linear time: formulae classify sets of
(linear) in�nite traces of a system evolv-
ing through time. Also like LTL, TLA
has temporal modalities “always” (2)
and “eventually” (3). However, unlike
LTL, TLA has no “next” (◦) modality.
Instead, TLA has a notion of “actions”
that describe instantaneous changes in
the system state, but which also allow
“stuttering steps” in which the trace
evolves in time but the state remains un-
changed. Thus, unlike LTL, TLA formulae
are always “stuttering invariant,” that is,
they cannot di�erentiate traces by how
long they stutter.
Syntactically, TLA has two classes of for-

mulae (Figure 1): actions, which denote in-
stantaneous changes to the system state,
and temporal formulae, which are predi-
cates on traces.
Actions are normal �rst-order logic for-

mulae except in the handling of terms.
Variables appearing in terms can be “rigid”
(written in italics), indicating that they do
not change over time, or “�exible” (writ-
ten in bold face), indicating that they may.
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E ∈ Terms ::= x | x | x′ | f(E1, . . . , En)

A ∈ Actions ::= R(E1, . . . , En) | E1 = E2 | ∀x.A | A1 ∧A2 | ¬A

P ∈ Propositions ::= 2P | ¬P | P1 ∧ P2 | 2[A]<x1,...,xn> | ∀x.P | ∀∀x.P

T ∈ Formulae ::= A | P

∃x.T , ¬∀x.¬T

∃∃x.P , ¬∀∀x.¬P

T1 ∨ T2 , ¬(T1 ∧ T2)

T1 ⇒ T2 , ¬T1 ∨ T2

Figure 1: Syntax and Syntactic Sugar of TLA

Flexible variables may appear primed (x′)
or unprimed (x) denoting the variable’s
value in the next or current state, respec-
tively.
Temporal formulae are comprised of the

usual propositional connectives and tem-
poral quanti�ers, along with a special op-
erator 2[A]v, where A is an action and v is a
function on the system state). Intuitively,
the formula 2[A]v means “it is always the
case that either the action A happens or
v does not change.” TLA is also equipped
with ordinary (�rst-order) quanti�ers over
rigid variables ∀x.P as well as “temporal”
quanti�ers over �exible variables ∀∀x.P .
Lamport’s semantics for TLA (Figure 2)

interprets temporal formulae using a dis-
crete model of time. Traces are modeled
as functions from natural numbers to a
“state,” where states are assignments of
values for each �exible variable.
Lamport’s semantics are unusual in the

handling of the �exible quanti�er (∀∀).
Naïvely, �exible quanti�cation would be

θ, ρ |= ∀∀x.P iff for every d ∈ DN,

θ, ρ ] (x 7→ d) |= P

Definition 1 (Discrete Stuttering Equivalence).
Given any set S, the stuttering equivalence rela-

tion ≈ on behaviours SN is the least equivalence

relation such that for every ρ ∈ SN and n ∈ N we

have ρ ≈ ρ′ when ρ′ is given by

ρ′(m) = ρ(m) when m ≤ n

ρ′(m) = ρ(m− 1) when m > n.

Unfortunately, in this semantics, the
de�nition of �exible quanti�cation must
explicitly “bake in” stuttering invariance
and this makes �exible quanti�cation be-
have quite di�erently from the ordinary
semantics of modal logic.

Proposition 1 (Stuttering Equivalence of TLA).
For any P, θ, ρ, ρ′ such that ρ ≈ ρ′

θ, ρ |= P iff θ, ρ′ |= P.

Kaminski and Yariv [9] proposed an
alternative semantics for TLA based on
a continuous notion of time. In this
setting traces are interpreted as “non-
Zeno” functions from the non-negative
real numbers.

Definition 2 (Non-Zeno function). A non-Zeno

function over a set S is a function f from non-

negative real numbers to S such that

1. for every t ∈ R≥0 there exists a positive ε

such that for all t′ where t ≤ t′ < t + ε we

have f(t) = f(t′) and
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θ, σ, σ′ |= A1 ∧A2 iff (θ, σ, σ′ |= A1) and (θ, σ, σ′ |= A1)

θ, σ, σ′ |= ¬A iff θ, σ, σ′ 6|= A

θ, σ, σ′ |= E1 = E2 iff JE1K(θ, σ, σ′) = JE2K(θ, σ, σ′)

θ, σ, σ′ |= ∀x.A iff for every v ∈ D (θ ] x 7→ v), σ, σ′ |= A

θ, σ, σ′ |= R(E1, . . . , En) iff R(R)(JE1K(θ, σ, σ′), . . . , JEnK(θ, σ, σ′))

JxK(θ, σ, σ′) = θ(x)

JxK(θ, σ, σ′) = σ(x)

Jx′K(θ, σ, σ′) = σ′(x)

Jf(E1, . . . , En)K(θ, σ, σ′) = F(f)(JE1K(θ, σ, σ′), . . . , JE1K(θ, σ, σ′))

θ, ρ |= P1 ∧ P2 iff θ, ρ |= P1 and θ, ρ |= P2

θ, ρ |= ¬P iff θ, ρ 6|= P

θ, ρ |= 2P iff for every n ∈ N θ, ρ[n, . . .] |= P

θ, ρ |= 2[A]<x1,...,xm> iff for each n ∈ N either θ, ρ[n], ρ[n+ 1] |= A or ∀i ∈ [1,m].ρ[n](xi)

θ, ρ |= ∀x.P iff for every v ∈ D (θ ] x 7→ v), ρ |= P

θ, ρ |= ∀∀x.P iff for every d ∈ DN and ρ′ ≈ ρ, θ, ρ′ ] (x 7→ d) |= P

Figure 2: Discrete Time Semantics of TLA

2. there is no bounded increasing sequence

t0, t1, t2, . . . such that forall i, f(ti) 6=

f(ti+1).

These two conditions ensure that a non-
Zeno function does not change too quickly:
the �rst condition guarantees that each
state is held for positive time, while the
second ensures that only a �nite number
of states are visited in any �nite length of
time. We (ab)use the notation SR+ to refer
to the set of non-Zeno functions over S.
Stuttering invariance of a set of such

non-Zeno functions is modeled as clo-
sure under pre-composition by home-
omorphisms on R≥0 (with the standard
topology). The alternative continuous se-
mantics (Figure 3) yields exactly the same
notion of truth as Lamport’s original se-
mantics, while avoiding the need to “bake

in” stuttering invariance in its de�nitions.
This continuous semantics clari�es

many aspects of TLA. It explains stutter-
ing invariance as invariance under time
dilation. Furthermore, it presents rigid
and �exible variables uniformly, allowing
them to be viewed as coming from two
di�erent types. Categorically, this means
rigid and �exible quanti�cation should
correspond to quanti�cation over di�erent
objects.

3 Semantics of Higher-order Logic

Higher-order Logic (HOL) (see [2]) com-
bines a (possibly intuitionistic) logic with
the simply-typed λ-calculus. It may be
viewed as an extension to multi-sorted
�rst-order logic that adds features for
quantifying over function types and
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next(τ, S) , 0 when ∀t ∈ R≥0,∀x ∈ S, τ(0)(x) = τ(t)(x)

next(τ, S) , sup{r | ∀0 ≤ k ≤ r, ∀x ∈ S, τ(0)(x) = τ(k)(x)} otherwise

θ, τ |=R 2[A]x1,...,xn iff r = 0 or θ, τ(0), τ(r) |= A

where r = next(τ, {xi|0 ≤ i ≤ n})

θ, τ |=R T1 ∧ T2 iff θ, τ |=R T1 and θ, τ |=R T2

θ, τ |=R ¬T iff θ, τ 6|=R T

θ, τ |=R ∀x.T iff for every v ∈ D we have (θ, x 7→ v), τ |=R T

θ, τ |=R ∀∀x.T iff for every v ∈ DR+ we have θ, (x 7→ (τ(r),x 7→ v(r))) |=R T

θ, τ |=R 2T iff for every k ∈ R≥0 such that θ, τ [k..] |=R T

Figure 3: Continuous-time Semantics of TLA

propositions.
Modal variants of higher-order logic

are usually formed simply by adding ad-
ditional modal operators exactly as one
would in a propositional logic.
There are many semantics for higher-

order logic. In the “standard” seman-
tics, types are interpreted as sets, func-
tion types are interpreted as the set of all
functions between their constituents, and
propositions are interpreted as booleans.
This model is incomplete, however.
A more general class of model is found

in topoi.

Definition 3. A topos is a cartesion closed cat-

egory E possesing all finite limits and a subob-

ject classifier, i.e. an object Ω and a monic arrow

true : 1 → Ω such that ∀ monic m : S → B

∃!φm : B → Ω such that
S 1

B Ω

m

!

true
φm

is a

pullback.

In the naïve topos semantics, types (also,

contexts) are interpreted as objects, terms
are interpreted as morphisms, function
types are interpreted by way of the inner
hom, and the proposition type is inter-
preted as the subobject classi�er.
However, this topos semantics is still too

strong—it justi�es additional laws which
are not derivable from the natural de-
duction rules in Figure 4. In particular,
the topos semantics imposes upon higher-
order logic the additional property of ex-
tensionality of entailment (see [4] 5.3.7)

Γ ` P,Q : σ → Prop

Γ, x : σ | Θ, Px ` Qx Γ, x : σ | Θ, Qx ` Px

Γ | Θ ` P =σ→Prop Q

.
A class of categorical models for higher-

order logic with more examples is obtained
by weakening the structure involved in the
subobject classi�er.

Definition 4 (Hyperdoctrine). Let P : Cop →

HeyAlg be a functor from a cartesion closed C
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into the category of Heyting algbras such that:

1. ∀X,Y : ObjC there are monotone ∃XY ,∀XY :

HomPreOrd(P(X×Y ),P(Y )) such that for π :

X × Y → Y the projection ∃XY a P(π) a ∀XY
and satisfying the Beck-Chevalley condition

∀f : Y → Y ′
P(X × Y ′) P(X × Y )

PY ′ PY

∀X
Y ′

P(idX×f)

∀X
Y

Pf

commutes as does the similar ∃XY diagram;

2. (Forget · P) : Cop → Set is representable.

Hyperdoctrines provide a setting for a
sound and complete semantics for HOL
by modeling contexts using the under-
lying cartesian closed category structure,
with the Heyting algebra of propositions
over those contexts given by the functor,
and the quanti�ers induced by the ad-
joints.1 Moreover, by replacing the cate-
gory of Heyting algebras with the cate-
gory of Boolean algebras, we gain a notion
of “classical hyperdoctrine,” which pro-
vides a sound and complete semantics for
classical higher-order logic. Finally, using
an even stronger category of “modal alge-
bras” yields a model of S4 modal higher-
order logic.

Definition 5. A modal algebra is a pair (A,2) :

Obj(MAlg) where A is a Heyting algebra and 2

is a left exact comonad on A.

A modal algebra morphism f : (A,2) →

(B,2′) is a morphism of the underlying Heyting

algebras which commutes with the modalities in

the sense that f ·2 = 2′ · f .
1Completeness, as is often the case, holds for the class

of models by constructing an appropriate syntactic object
initial in the category of hyperdoctrines as in [10].

Definition 6 (Modal Hyperdoctrine). Let P :

Cop → MAlg be a functor from a small cartesian

closed category C into the category of Modal al-

gbras MAlg otherwise satisfying the axioms of a

hyperdoctrine.

The hyperdoctrine semantics fully gen-
eralizes the topos semantics, as every
topos T induces a (intuitionistic) hyper-
doctrine

(T,HomT (−,Ω)). (1)

However, these are not the only hyper-
doctrines of interest. Speci�cally, the only
fact about Ω in equation 1 required for the
resulting structure to be a (intuitionistic)
hyperdoctrine is that it forms an internal
complete Heyting algebra in T .
Given any topos E and internal com-

plete Heyting algebra H in E, there is
a natural way of equipping HomE(−, H)

with a Heyting algebra structure so that
(E ,HomE(−, H)) forms a hyperdoctrine.
If H is an internal complete boolean or

modal algebra in T , then the resulting hy-
perdoctrine will be classical or modal, re-
spectively [1].
In this topos-theoretic setting, we can

apply a simple recipe for constructing
a topos together with internal complete
modal algebras. Recall

Definition 7. Let E , F be topoi. A geometric mor-

phism f : E → F is an adjunction E F
f?
>

f?

such that the left adjoint f?, known as the in-

verse image, preserves finite limits. If every object

X : Obj(E) is a subquotient of an object of the

inverse image f?, so that there exists Y : Obj(F)

and diagram f?(Y )� S � X, then f is localic.
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Geometric morphisms are a source of in-
ternal complete Heyting algebras.

Proposition 2. Let f : E → F a geometric mor-

phism. Then f?(ΩE) is a complete Heyting algebra

internal to F .

Geometric morphisms are also a source
of adjoint pairs of maps of complete Heyt-
ing algebras.

Lemma 1 ([8] C1.3). In any topos E , the subob-

ject classifier ΩE is the initial complete Heyting

algebra object. That is, for all complete Heyting

algebras H internal to E , there is a unique map

of complete Heyting algebras i : ΩE → H. More-

over, the right adjoint of τ is the classifying map

of the top element >H : 1→ H.

This adjoint pair of maps de�nes a useful
comonad.

Lemma 2 ([1]). Given a complete Heyting algebra

H internal to topos E , let i ` τ the canonical

adjunction i : ΩE
→← H : τ . The composite i ◦ τ is

an S4 modality on H.

If we have two topoi, E and F, and a geo-
metric morphism f : E → F then the image
of the subobject classi�er of E in F is an
internal complete modal algebra in F.
An illustrative example is given by a

topos-theoretic view of Kripke semantics.
Let K be a preorder, interpreted as a col-
lection of “possible worlds,” together with
an accessibility relation. By |K| we mean
the discrete category with the same under-
lying objects as K.
The inclusion |K| → K induces a geo-

metric morphism f : Psh(|K|)→ Psh(K).

Lemma 3 ([7], prop. 3.1). Let f : D→ C be a func-

tor of small categories. If f is faithful, then the

induced geometric morphism Psh(D) → Psh(C)

is localic.

Thus we obtain a modal hyperdoc-
trine on (Psh(K),HomPsh(K)(−, f?(ΩPsh(|K|))).
In particular, as |K| is a groupoid, E =

Psh(|K|) is a Boolean topos, so f?(ΩE) is not
only a complete Heyting algebra internal to
F = Psh(K), it is an internal Boolean alge-
bra! The resulting logic is classical, even
though Psh(K) is very much not a boolean
topos in general (it is, instead, a Kripke
model of an intuitionistic logic). The in-
ternal logic of this modal hyperdoctrine is,
in the �rst-order fragment, exactly what
we would get from the Kripke semantics
over K. And thus we have a simple pre-
sentation of a higher-order version of that
semantics.

4 The Model

Now we are ready to construct a candidate
model for a Higher-order TLA.
Why not simply use the topos-theoretic

Kripke semantics, described in Section 3,
applied to the discrete semantics? This ap-
proach will fail because TLA’s discrete se-
mantics is not an ordinary Kripke seman-
tics, since �exible quanti�cation is not
ordinary Kripke quanti�cation (see Sec-
tion 2). Even the continuous semantics is
not adequately captured in the ordinary,
preorder-based, Kripke view since Kripke
does not account for stuttering.
We must build a model that includes
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stuttering invariance from the get go. Pre-
orders are inadequate to this task. Luck-
ily, the geometric morphism construc-
tion described in Section 3 is not spe-
ci�c to Kripke’s inclusion of a discrete set
into a preorder. Any faithful functor be-
tween small categories whose domain is
a groupoid induces a model of classical
higher-order modal logic.
Our model is enabled by the following

elementry observation: in the continuous
semantics, stuttering invariance is pre-
cisely closure under the action the group
of stutters.

Definition 8 (Stutter). A stutter is a continuous

function R≥0 → R≥0 with continuous inverse.

By S we denote the group of stutters

S = ({f : R≥0 → R≥0 | f is a stutter}, ·, idR≥0)

.

We will adopt the convention of viewing
any monoid G as the category BG with one
object and one monoid’s worth of mor-
phisms. This way the category of G-sets
and G-set morphisms for a group G (more
generally, for any monoid) is just Psh(BG).
Non-Zeno functions on a set form a
S-set where the action of S is pre-
composition. Stuttering invariant subsets
of that set are then, exactly, sub S-sets.
As such, the category of S-sets (Psh(BS))

seems to be closely connected to our prob-
lem. Since S is a group BS is a groupoid
and the presheaf topos Psh(BS) is boolean.
Therefore, it is a tempting target for the
semantics of a higher-order TLA. We al-
ready know this will not work on its own

though, as a topos is not enough to in-
terpret the modalities. The most important
modality for our purposes is 2. A behavior
(viewed as a non-Zeno function) is always
a member of some set of behaviors if, given
any initial delay in which the behavior is
not observed, the remainder is in that set.
Thus, while stuttering invariance has to do
with closure under dilation of time by bi-
continuous functions, 2 has to do with the
translation of time.

To that end, we introduce a generaliza-
tion of stutters, which we call “falters,”
which can include translation as well as di-
lation.

Definition 9. A falter is a monotone function f :

R≥0 → R≥0 such that the function x 7→ f(x) −

f(0) is a stutter.

By F we denote the monoid of falters (under

function composition).

There is a natural morphism of monoids
ι : S → F given by inclusion, inducing
a faithful functor ι : BS → BF. As men-
tioned in Section 3, such a faithful functor
induces a localic geometric morphism on
the associated presheaf categories ι? a ι? :

Psh(BS) →← Psh(BF). Our proposed model
for a higher-order TLA is the hyperdoc-
trine induced by this geometric morphism.

We will now elaborate some details of
this model. We consider F-sets to be
“temporal types” as these are the types
about which we can talk in our model. The
type of �exible variables over some base
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set are computed according to the functor

Flex : Set→ Psh(BF)

Flex(S) = ({f : R≥0 → S | f non zeno}, ·)

While the type of rigid variables over a base
set is computed according to the functor

Rigid : Set→ Psh(BF)

Rigid(S) = (S, ((_, x) 7→ x))

There is a natural inclusion morphism
from Rigid → Flex, which is (for every
set) monic. However, Rigid(S) is not the
only subobject of Flex(S). Any stuttering-
and translation-closed subset of behav-
iors will be interpretable as a temporal set.
Of course, these are not the only tempo-
ral types: the inner hom between types
of �exible variables, for instance, corre-
sponds to temporal processes rather than
�exible variables over functions of the un-
derlying sets.
In Section 3 we reviewed the fact that a

modal hyperdoctrine may be represented
by applying the inverse image part of the
geometric morphism to the subobject clas-
si�er in Psh(BS). As S is a group, it has only
two ideals, ∅ and S. Thus, ΩPsh(BS) is the set
2 with the trivial S-action.
As presheaf categories have all

(co)limits, the inverse image part of
the geometric morphism may be com-
puted as a right Kan extension. As
our categories BS and BF have sin-
gleton objects, this can be computed
pointwise. Given F : SetBS, we compute
lim

(
•S ↓ ι

π•S→ BS F→ Set
)
, which amounts

to equalizing away the stutter action

∏
S\F F(•S)

∏
F F(•S)

∏
S×F F(•S) .

On Psh(BS)’s subobject classi�er, this is

Prop , ι?(ΩPsh(BS))

= ({p : F → 2 | ∀m ∈ S, n ∈ F , p(n) = p(nm)}

, (n, p) 7→ (r′ 7→ p(n · n′)))

∼= (P(R≥0), (n,O) 7→ im−1(n)(O))

Consequently (and pleasingly), in our
model, a proposition corresponds to the set
of times when that proposition is true.
All the usual connectives coming from

the boolean algebra structure are com-
puted pointwise. All that remains is to
compute the modal structure. The subob-
ject classi�er in Psh(BF) is the collection
of falter ideals

ΩPsh(BF) = {I ⊆ F | ∀i ∈ I ∀f ∈ F . i · f ∈ I},

but these are just all upward-closed sub-
sets of R≥0, so ΩPsh(BF) ∼= 〈P↑(R≥0), (n,O) 7→

im−1(n)(O)〉. As subobject classi�er in
Psh(BF), ΩPsh(BF) is initial in complete
Heyting algebras internal to F, so the ob-
vious equivariant inclusion iΩ : ΩPsh(BF) ↪→

ι?(ΩPsh(BS)) is essentially unique. The right
adjoint τΩ : ι?(ΩPsh(BS)) → ΩPsh(BF), which
classi�es 1→ ι?(ΩPsh(BS)), is, then, the up-
ward closure ↑ (−) : P(R) → P↑(R). The ad-
junction 2 := iΩ ◦ τΩ : End(ι?ΩPsh(BS)) pro-
vides a left exact comonad on the complete
internal Heyting algebra ι?(ΩPsh(BS)).
The resulting modal structure is quite

natural – it reduces to ensuring that a
proposition holds at all future times

2(−) : Prop→Psh(BF) Prop

2(S) = {r ∈ R≥0 | ∀r′ ≥ r, r′ ∈ S}.
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As such, our categorical model is pre-
cisely a higher order generalization of the
continuous-time semantics presented in
Section 2.

Theorem 1. The modal hyperdoctrine

(Psh(BF),Hom(−, ι?(ΩBS))) admits a sound

interpretation of higher-order classical S4. More-

over, restricting to the first-order fragment, this

model corresponds to the model of the Temporal

Logic of Actions in Figure 3 and agrees for

validity with the standard semantics (Figure 2).

5 Conclusion

We have found a categorical setting in
which to model a higher-order version of
TLA, providing a way of assigning mean-
ing to statements in this logic. This a �rst
step towards a useful higher-order tem-
poral logic for digital systems. In particu-
lar, the model we have described will allow
us to formulate proof rules and verify that
they are sound with respect to our model.
We imagine that other models for such a
proof theory may also be of interest.
Our model construction started by

switching from the discrete-time seman-
tics for TLA that was originally formulated
by Lamport to a real-time semantics. This
was essential, since stuttering invariance
does not correspond to closure under
a group action in the discrete case. In
Lamport’s semantics, stuttering forms a
monoid (at best) rather than a group, and
closure under the action of that monoid
fails to fully account for stuttering invari-
ance. Nonetheless, a categorical semantics

of higher-order TLA based on discrete-
time stuttering invariance remains an
intriguing challenge.

We plan to continue our work on a
higher-order TLA, with the goal of using
it as the basis of a proof assistant and
toolchain for practical engineering pur-
poses. Yet signi�cant challenges remain,
such as developing the required syntax,
proof theory, and so on. Moreover, it re-
mains to be seen how extending TLA with
higher-order features can be put into use-
ful practice. A potential use case would be
to specify a variant of PlusCal [12], a pro-
gramming language that translates to TLA,
then extending it with handy higher-order
features such as closures or objects.

Our goal in this paper was to �nd a
model satisfying our desiderata. It remains
to state what, exactly, “higher-order TLA”
is and to specify its class of models. In the
present paper we focused on giving an ac-
count of the temporal types, neglecting the
underlying non-temporal sets. A detailed
and generalized account of the categori-
cal properties of TLA’s action lifting con-
struction will necessarily be needed in fu-
ture work. All that said, the particular form
of the model we found is intriguing. Be-
cause the underlying category of our hy-
perdoctrine is a topos, and not just carte-
sion closed, it has all �nite limits. As such,
it is a promising setting for developing an
account of speci�cation composition using
pullbacks [3, 6].
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A Rules of Higher-order logic

T, S ∈ Types ::= . . . | T → S | Prop M,N,O ∈ Terms ::= . . . | x | λ(x : T ).M |M N | (⇒) | ∀T

M ⇒ N , (⇒) M N

∀(x : T ).M , ∀T (λ(x : T ).M)

⊥ , ∀(p : Prop).p

> , ∀(p : Prop).p⇒ p

¬M ,M ⇒ ⊥

M ∧N , ∀(p : Prop).(M ⇒ N ⇒ p)⇒ p

M ∨N , ∀(p : Prop).(M ⇒ p)⇒ (N ⇒ p)⇒ p

∃(x : T ).M , ∀(p : Prop).(∀(x : T ).M ⇒ p)⇒ p

Γ `M ≡ N : T

Γ ` N ≡M : T

Γ `M ≡ N Γ ` N ≡ O

Γ `M ≡ O

(x : T ) ∈ Γ

Γ ` x ≡ x : T

Γ `M1 ≡M2 : S → T Γ ` N1 ≡ N2 : S

Γ `M1 N1 ≡M2 N2 : T

Γ, x : T `M ≡ N : S

Γ ` λ(x : T ).M ≡ λ(x : T ).N : T → S

Γ, x : T `M ≡M : S Γ ` N ≡ N : T

Γ ` (λ(x : T ).M) N ≡M [N/x] : S

Γ, x : T `M x ≡ N x : S

Γ `M ≡ N : T → S

Γ ` (⇒) ≡ (⇒) : Prop→ Prop→ Prop Γ ` ∀T ≡ ∀T : (T → Prop)→ Prop

Γ | ∅ ` wf

Γ | Θ ` wf Γ `M ≡M : Prop

Γ | Θ,M ` wf

M ∈ Θ Γ | Θ ` wf

Γ | Θ `M true

Γ | Θ `M true Γ `M ≡ N : Prop

Γ | Θ ` N true

Γ | Θ `M ⇒ N true Γ | Θ `M true

Γ | Θ ` N true

Γ | Θ,M ` N true

Γ | Θ `M ⇒ N

Γ | Θ ` ∀T M true Γ ` N ≡ N : T

Γ | Θ `M N true

Γ `M ≡M : T → Prop Γ | Θ ` wf Γ, x : T | Θ `M x true

Γ | Θ ` ∀T M true

Figure 4: Intuitionistic Higher-order Logic
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